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Abstract 0 Artificial neural networks applied to in vitro−in vivo
correlations (ANN−IVIVC) have the potential to be a reliable predictive
tool that overcomes some of the difficulties associated with classical
regression methods, principally, that of providing an a priori specifica-
tion of the regression equation structure. A number of unique ANN
configurations are presented, that have been evaluated for their ability
to determine an IVIVC from different formulations of the same product.
Configuration variables included a combination of architectural
structures, learning algorithms, and input−output association structures.
The initial training set consisted of two formulations and included the
dissolution from each of the six cells in the dissolution bath as inputs,
with associated outputs consisting of 1512 pharmacokinetic time points
from nine patients enrolled in a crossover study. A third formulation
IVIVC data set was used for predictive validation. Using these data,
a total of 29 ANN configurations were evaluated. The ANN structures
included the traditional feed forward, recurrent, jump connections, and
general regression neural networks, with input−output association types
consisting of the direct mapping of the dissolution profiles to the
pharmacokinetic observations, mapping the individual dissolution points
to the individual observations, and using a “memorative” input−output
association. The ANNs were evaluated on the basis of their predictive
performance, which was excellent for some of these ANN models.
This work provides a basic foundation for ANN−IVIVC modeling and
is the basis for continued modeling with other desirable inputs, such
as formulation variables and subject demographics.

Introduction
It is often desirable to determine a good correlation

between the in vitro dissolution data and the in vivo
pharmacokinetics. This modeled relationship can then be
used in product development or in establishing dissolution
specifications. Many of the previous examples of defining
an in vitro-in vivo correlation (IVIVC) in drug studies
follow simple linear models, relating a parameter or a time
point descriptive of the dissolution to a parameter or a time
point descriptive of the pharmacokinetic absorption.1-3

However, often a model is unsuccessful in completely
describing the IVIVC and sometimes no relationship can
be determined. The number of possible variables, the
model being unable to account for some physiological rate
determining process, and the possible amount of variability

intrinsic to the parameters of these modeled relationships
are some examples of these difficulties.4-6

It is an aim of the IVIVR Cooperative Working Group
to extend the development of IVIVC using newer modeling
tools, such as those in the field of artificial intelligence.
The self-organizational properties of these methods and
their ability to incorporate a large number of possible
variables and relationships without a predefined model
structure encourage the evaluation of artificial neural
networks (ANN) in determining an IVIVC.

The term ANN refers to a group of algorithms used for
pattern recognition and data modeling. As its name
implies, ANN systems are loosely based on neural physiol-
ogy, using the concept of a highly interconnected system
of parallel processing units. It is not the intent of this
paper to intensively cover ANN methodology; a review of
the development of ANN can be found elsewhere,7 as well
as a complete description of the theory involved and tested
in this research.8-10

The application of neural network concepts is relatively
new to the field of pharmacokinetics and pharmacodynam-
ics. An introduction to ANN as applied to the field of
pharmacokinetics was given by Erb, who described the
common back-propagation learning algorithm11 and dem-
onstrated its ability to be used as a bayesian classifier using
simulated data.12 The application of real pharmacokinetic
data for the task of learning interspecies scaling, using
different input-output data formats and neural network
configurations, has been described by Hussain et al.13 They
also described the problem of the lack of a structured set
of rules or guidelines in determining network configuration
variables, such as the number of hidden nodes, the neces-
sary number of training iterations, and the proper data
format. Application of an ANN to predict drug behavior
based on patient demographics and patient factors, and a
comparison to a more traditional approach has also been
described.14 The implementation of ANNs in pharmaco-
dynamics to predict the central nervous system activity due
to the drug alfentanil has been examined.15 ANNs have
also been successfully implemented in problems very
similar to IVIVC, such as product development16 and
quantitative structure-pharmacokinetic relationships,17

again using a common back-propagation approach to ANN
learning.

It is our eventual aim to develop a methodical approach
to ANN-IVIVC, and the intent of this paper and current
research is to show the feasibility of ANN-IVIVC by
presenting the results from some common ANN configura-
tions and data formats, using a relatively small set of
IVIVC data for training and prediction. The results from
a newer ANN, which does not use the back-propagation
iterative learning paradigm, are also presented. It is not
the intent of this paper to rigorously compare this method
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with other available IVIVC methods, suggest this approach
as appropriate for different situations, nor suggest that this
method is a simpler means for correlating in vitro-in vivo
data. Such comparisons and analyses, which are ongoing
within our group, require numerous types of data and
experimental design.

Methods

Description of TermssThere is a great deal of diversity in
terminology within the ANN literature, and it is necessary to
define some important terms that will be used throughout this
paper. These defintions are not intended to be a glossary of terms
in the area of artificial intelligence programming, but rather a
necessary beginning in establishing a common foundation. Begin-
ning with the format of data, each correlation between a set of
input variable(s) and a set of output variable(s) is defined as an
input-output association and all of the input-output associations
collectively form a pattern file. ANNs learn using a pattern file
known as a training pattern file, in which the individual input-
output associations from this file are presented either randomly
or in a defined order. A validation pattern file, which does not
use data involved in training, is applied to the trained ANN to
test the predictive capabilities of the trained ANN. Memorization
of an ANN is a common problem referring to when an ANN has
become over-trained and is mimicking the training pattern file.
This is a situation where the ANN does not have the ability to
predict well using inputs other than those found in the training
pattern file. To avoid memorization and to establish a criteria to
stop training, a test pattern file is constructed using associations
from the training pattern file and applied periodically to the ANN
during training. The input-output associations from the test
pattern file are not used in the training, but as a measure of
memorization and as a criteria to terminate training. The basic
functional element of a neural network is defined as a node, which
possesses a certain type of transfer function. The connections
between nodes carry a weighting term, which is the element of
an ANN that is continually adjusted during training. Nodes are
arranged in layers: input layer, hidden layer(s), and output layer.
It is necessary to define these terms prior to describing any
methodology or discussing the results to prevent any confusion
due to a lack of formalized vocabulary in artificial intelligence
research.

Trial Data and SoftwaresThe data set reported in this study
included in vitro inputs (% dissolved) and in vivo outputs (plasma
concentrations). Inputs in the training pattern files consisted of
the dissolution values from two extended-release formulations with
seven dissolution time points each, at which six tablets were tested
per formulation. Each formulation was administered to nine
individuals in a crossover trial. Corresponding ANN outputs
consisted of the drug plasma concentrations, sampled at 15 time
points following oral tablet administration. A third extended
release formulation, with the same experimental setup and part
of the same crossover study, was used as a validation set. Success
of the ANNs was based on the prediction of the validation profile.

The complete data set, consisting of the three separate formula-
tions and correlated kinetics, was chosen because the pharmaco-
kinetics for this drug was known to follow a “flip-flop” first-order
absorption model, where the absorption of this drug was relatively
slow compared with its elimination. This situation, as a trial for
ANN-IVIVC, gave reasonable assurance that the dissolution
kinetics could be considered a variable influential throughout the
pharmacokinetic profile.

All ANN training and application were performed using Ward
Systems’ software package, NeuroShell 2.18

Choice of Neural Network ConfigurationssPart of the aim
of these studies and the focus of this paper was to determine the
best network configuration for this relatively small set of in vitro-
in vivo data using a systematic approach. This determination was
performed by initially selecting a set of common network archi-
tectures. Network configuration variables that are the focus here
included the type of input-output association, network architec-
ture, and for some architectures, the number of hidden layers.

Network ArchitecturessThese trials involved four basic
types of ANN architectures contained within the NeuroShell 2
software: traditional feed forward neural networks, recurrent
neural networks, jump connection neural networks, and general-
ized regression neural networks. Diagrams of these network
structures, with the nodes represented collectively as functional
blocks, are shown in Figure 1. Including the type of network
architecture and the number of hidden layers, we have tested a
total of eight types of network architectures. A summary of each
ANN architecture is given below and shown in Table 1.

Two of these ANN architectures are the common three and four
layer feed forward neural networks (FFNN3 and FFNN4 shown
in Figures 1a and 1b, respectively), which have one and two hidden
layers, respectively. To give the network functional flexibility, a
linear function (f1 (x) ) x) was used for the nodes in the input

Figure 1sBlock diagrams of the ANN architectures used in the study. Almost all of the architectures employ some type of back-propagation learning. The general
regression neural network uses a statistical technique known as kernel regression.
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layer and a logistic function (f2 (x), f3 (x), f4 (x) ) 1/(1 + exp(-x)))
was used for each node in the hidden and output layers.

The recurrent networks defined as RNNi, RNNh, and RNNo
(Figures 1c, 1d, and 1e, respectively) had recurrent connections
to the input, hidden, and output layers, respectively. Recurrent
architectures do not have the input to output feed forward design;
their recurrent design allows for a “long-term memory”. This type
of structure has the ability to learn sequences of input-output
associations. Therefore, the setup of input-output data sequence
presented in training and prediction becomes very important to
these networks and their order must be considered, such as when
the data is presented as a time series. The transfer function of
each node in the hidden and output layers was set as a logistic
function, whereas the input layer nodes were set to a linear
function. The fourth layer can be called the network’s “long-term
memory”, and has no node functionality. It contains the contents
of the connected layer as it was in the previous training. These
types of networks have been shown to work well with time series
data that depend on history.19

The following two network architectures are a type of ANN
known as jump connections. In this type of back-propagation
network, every layer is connected in a feed forward manner. Three
and four layer jump connection ANN architectures, designated
JCNN3 and JCNN4 (Figures 1f and 1g), respectively, were used
because they may be possible alternatives to the traditional feed
forward structures, and were given the same node functions as
FFNN3 and FFNN4.

Unlike the other ANNs, a general regression neural network
(GRNN) is not an ANN that uses the back-propagation learning
paradigm. The GRNN is an ANN system that involves a statistical
technique known as kernel regression and requires the data to
only be iterated once through the network during training.10

Training of the GRNN was done using two options available in
the NeuroShell 2 software. Patterns were compared based on their
differences in distance using the vanilla or Euclidean distance
metric, and smoothing was performed by using a genetic algorithm
that selectively breeds a solution to the problem using a fitness
function as a measure of survival. The mean squared error of the
outputs in the test pattern file is used as the fitness function in
the software. The NeuroShell 2 software manual contains de-
scriptions of this terminology and these options with suggestions
for their implementation.18

In all but the GRNN, training was performed by the software
using a back-propagation scheme. Back-propagation is the most
widely used learning algorithm employed in training neural
networks. In its simplest form, it should be very familiar to those
involved in data fitting and regression because it is an iterative
gradient descent procedure that minimizes the error.20

Network Training CriteriasIn all nonrecurrent networks,
10% of the training pattern file was randomly selected and placed
aside as a test pattern file during training. Recurrent neural
networks, however, rely on previous history, which required the
data to be presented as a time series across input-output
associations. This presentation also included the application of
any test or validation pattern file. For this reason, the test pattern
file applied to any recurrent architecture consisted of the associa-
tions from the ninth subject/second formulation, kept in time
sequence.

The test pattern file was not included in the training, but was
used as a periodic measure of the network’s ability to successfully
predict while being trained. The test pattern file was applied to
the network after every 200 input-output associations (training
events), using the NET-PERFECT feature in the NeuroShell 2
software. The prediction of the outputs in the test pattern file
was used as a stop criterion. In each case, the network was
directed to stop training after 20000 training events following a
minimum error, and the weights corresponding to that minimum
were saved as the trained ANN.

Associations and Pattern FilessFour different types of
pattern files constructed from the same data were selected for
evaluation. The pattern files, named ASSOCIATION 1 through
4, were unique because of different formatting of the input-output
association. Each training pattern file had corresponding valida-
tion and test pattern files constructed with the same type of input-
output association. A diagram of each type of input-output
association is shown in Figure 2, indicating the structure of the
relationship as well as using subscripts to show how the data are
formatted across associations to create a pattern file. General
descriptions of the input-output associations are given next, and
a summary of the constructed pattern files is shown in Table 2.

ASSOCIATION 1sInitially the data were presented as the
functional relationship shown in Figure 2a, with an input-output
association that used all of the pharmacokinetic concentration
values from an individual as an output set associated with an input
set that consisted of the dissolution profile from an individual
tablet. The pattern file then contained each pharmacokinetic
observation set associated with each of the six tablet dissolution
profiles. The dissolution mean was not used in this type of pattern
file, or in either of the other three pattern files.

ASSOCIATION 2sLike ASSOCIATION 1, the input-output
associations in this pattern file included the complete kinetic set
of dissolution values for each tested tablet, but each was associated
with a single respective pharmacokinetic output. Collectively, the
input-output association lines of the pattern file formed a
pharmacokinetic time sequence. The pharmacokinetic time point

Table 1sSummary of the Eight Types of ANN Architectures Tested

type architecture
data

presentation test set
node configuration

(input-hidden-output)

FFNN3 feed forward 3 layers random ≈10% randomly selected linear−logistic−logistic
FFNN4 feed forward 4 layers random ≈10% randomly selected linear−logistic−logistic−logistic
RNNi recurrent input−input rotational individual subject with single formulation with all 6 dissolution sets linear−logistic−logistic
RNNh recurrent hidden−input rotational individual subject with single formulation with all 6 dissolution sets linear−logistic−logistic
RNNo recurrent output−input rotational individual subject with single formulation with all 6 dissolution sets linear−logistic−logistic
JCNN3 jump connections 3 layers random ≈10% randomly selected linear−logistic−logistic
JCNN4 jump connections 4 layers random ≈10% randomly selected linear−logistic−logistic−logistic
GRNN general regression neural network N/A ≈10% randomly selected to determine smoothing N/A

Table 2sPattern Files Constructed from the Different Input−Output Association Typesa

# association type association input(s) association output(s) pattern structure
#associations/

formulation

1 functional (7) dissolution setj (tDISS1:tDISS7) (15) PKi (tPK1:tPK15) subject1-9 (dissolution set1-6) 54
2 time series (8) tPK, dissolution setj (tDISS1:tDISS7) (1) PKi (tPK) subject1-9 (dissolution set1-6(tPK 1-15)) 810
3 time series (2) tDISS|PK, dissolution setj (tDISS) (1) PKi (tPK) only those

outputs where tPK ) tDISS

subject1-9 (dissolution set1-6(tDISS|PK 1-7)) 378

4 time series memorative
association

(1−8) tPK, dissolution setj (if tDISS < tPK ) (1) PKi (tPK) subject1-9 (dissolution set1-6(tPK 1-15)) 810

a PK ) Pharmacokinetic observations (in vivo); DISS ) % dissolved (in vitro); i ) subject number; j ) tablet number; tPK ) pharmacokinetic time point;
tDISS ) dissolution time point.
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was also included as an input. A diagram of this relationship is
shown in Figure 2b.

ASSOCIATION 3sThe input-output associations of this pat-
tern file, shown in Figure 2c, consisted of each in vitro value as
an input associated with each in vivo output. Pharmacokinetic
observations with no directly associated dissolution observations
were not used in the training. The time of the observation was
also added as an input.

ASSOCIATION 4sThis pattern file, shown in Figure 2d,
attempted to unite some of the more desirable features of the
previous pattern files that included presenting the entire dissolu-
tion profile per tested tablet as inputs (ASSOCIATIONS 1 and
2), presenting the data as a time sequence (ASSOCIATIONS 1, 2,
and 3), and utilizing all of the in vitro data (ASSOCIATIONS 1,
2, and 4). Pattern file ASSOCIATION 4 was a sequential time
series and included previous dissolution values as inputs. This
type of pattern file can be termed a memorative association and
was a type of time progressive synthesis neural network config-
uration described by Veng-Pedersen.15 The output consisted of
the pharmacokinetic concentration value, whereas the inputs were
the pharmacokinetic time point and all the dissolution values that
preceded that point in time. Dissolution values that occurred after
that pharmacokinetic time point were set to zero in the pattern
file and were interpreted as null inputs by the software.

Results and Discussion

A total of 29 network configurations, which included the
eight different types of ANN architectures and four types
of input-output associations, were tested. The three
recurrent architectures were not used with ASSOCIATION
1, because this type of relationship did not have a sequen-
tial format across associations.

Each network was trained as described in the methodol-
ogy, and the weights of each of the 29 trained ANNs were
saved. Inputs from the training and validation pattern
files were applied to the trained networks and these
respective ANN outputs were compared to the actual
observations. Shown in Table 3 are the results for both
the training and validation pattern files for each ANN
configuration, consisting of the correlation coefficient (R2),

mean prediction error (MPE), and mean absolute error
(MAE). These values are defined as

where y ) actual observation, ŷ ) ANN prediction, yj )
average observation, and N ) number of observations. Also
shown is the ratio of R2 between the predictions and
training pattern files, as an indicator of possible network
memorization.

Results from these trials, as summarized in Table 3,
reflect the success of each ANN configuration with this
particular set of IVIVC data. These results are measured
by the precision and bias of the outputs from the training
and validation pattern files. The ANNs attempted to
determine a mean concentration curve based on the
information contained in the dissolution kinetics, and in
some configurations, attempted to account for the vari-
ability in the pharmacokinetics due to variability in the
dissolution kinetics.

More than half of these ANN configurations could be
considered successful in predicting the pharmacokinetic
data from the dissolution kinetics. The better network
architectures for this IVIVC data set seem to be the feed
forward and the generalized regression architectures, based
on their ability to give good model predictions with all four
pattern files. The more successful pattern files included
formatting the data as a functional relationship (AS-
SOCIATION 1) and as a memorative pattern file (AS-
SOCIATION 4). An example of a model prediction from
one of these network configurations is shown in Figure 3
and Figure 4. In this example, the ASSOCIATION 4

Figure 2sDiagrams of the input−output associations used in pattern files ASSOCIATION 1 through 4. The subscripts i and j are used to show the number of
associations across association types.

R2 ) ∑(y - ŷ)2

∑(y - yj)2

MPE ) 1
N∑(ŷ - y)

MAE ) 1
N∑|y - ŷ|
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pattern file was used to train the GRNN. Following
training, the dissolution values from the training pattern
files were used as inputs to predict the pharmacokinetic
data. Comparisons of the actual observations with these
ANN outputs are shown in Figure 3. The dissolution
values from the validation pattern file were then presented
to this trained ANN, interpolating the pharmacokinetic
predictions shown in a comparison with the actual phar-
macokinetic observations in Figure 4. These figures are
representative of those network configurations that did
relatively well, with a MPE close to zero for both training
and validation sets, an R2 of >0.85 for the training set,
and an R2 of >0.77 for the validation set (R2 ratio >0.9).

The common and relatively simple FFNN architectures
(Figures 1a and 1b) worked well with this data set based
on the predictions of the validation pattern file outputs,
especially when the data were presented as a functional
relationship (ASSOCIATION 1). For some IVIVC data,
however, these types of architectures may not work as well
as time series predictors. Some IVIVC tend to be nonlin-
ear, requiring the ANN to incorporate past history. The
feed forward structure cannot incorporate history, but this
may be accounted for if the data is arranged as a memo-
rative association (ASSOCIATION 4), which also proved
successful with this IVIVC data. An interesting example
of network performance as a function of configuration
variables is seen in comparing the ASSOCIATION 2-
FFNN3 trial with the ASSOCIATION 2-FFNN4 trial,

where the additional hidden layer improved prediction
dramatically. Practical ANN experience has shown that
a majority of problems can be solved with a three-layered
design, and that a four-layered ANN may be prone to fall
into a local minima.21 However, with this IVIVC data set
formatted as the ASSOCIATION 2 pattern file, a four-
layered feed forward structure predicted well, whereas the
three-layered ANN failed to converge on a solution.

The JCNN architectures (Figures 1f and 1g), which are
structurally very similar to the FFNN architectures, also
compared well. The lack of any significant improvement
in describing these data, however, suggests that the
additional jump connections were not necessary.

Table 3sStatistical Results for the 29 Network Configurations Applied
to ANN−IVIVC

training set validation set

network R2 MPE MAE R2 MPE MAE

R2 ratio
(prediction/

training)

Association 1
FFNN3 0.878 −0.229 3.110 0.803 −1.431 3.992 0.915
FFNN4 0.880 −0.196 3.109 0.790 −1.435 4.089 0.897
RNNi N/A N/A N/A N/A N/A N/A N/A
RNNh N/A N/A N/A N/A N/A N/A N/A
RNNo N/A N/A N/A N/A N/A N/A N/A
JCNN3 0.875 0.454 3.207 0.819 −0.415 3.957 0.937
JCNN4 0.872 0.574 3.238 0.815 −0.526 4.007 0.935
GRNN 0.877 −0.001 3.180 0.800 −1.302 3.997 0.912

Association 2
FFNN3 0.136 −1.371 9.486 0.142 −2.180 9.588 1.041
FFNN4 0.865 0.493 3.316 0.792 −0.910 4.179 0.915
RNNi 0.732 3.642 5.080 0.742 3.061 5.422 1.013
RNNh 0.728 4.351 5.101 0.692 3.731 5.749 0.950
RNNo 0.741 4.273 5.268 0.763 2.312 5.336 1.029
JCNN3 0.101 −2.234 9.520 0.114 −3.062 9.612 1.134
JCNN4 0.078 −1.365 9.653 0.149 −1.396 9.592 1.910
GRNN 0.878 −0.035 3.184 0.788 −1.357 4.178 0.897

Association 3
FFNN3 0.749 −0.825 4.184 0.608 −2.931 5.352 0.812
FFNN4 0.752 −0.514 4.167 0.620 −2.623 5.296 0.824
RNNi 0.539 4.583 6.237 0.594 2.642 6.088 1.102
RNNh 0.420 6.089 7.171 0.559 3.493 6.381 1.333
RNNo 0.478 4.347 6.668 0.578 1.404 6.093 1.210
JCNN3 0.745 −0.073 4.267 0.614 −2.259 5.327 0.825
JCNN4 0.746 −0.235 4.238 0.617 −2.391 5.265 0.827
GRNN 0.769 0.031 3.998 0.634 −2.110 5.092 0.825

Association 4
FFNN3 0.846 −0.076 3.540 0.771 −1.573 4.465 0.911
FFNN4 0.854 −0.538 3.389 0.770 −1.683 4.280 0.901
RNNi 0.658 4.650 5.626 0.571 5.540 7.196 0.868
RNNh 0.696 0.744 5.187 0.580 5.174 7.135 0.834
RNNo 0.596 1.252 6.111 0.628 3.404 6.303 1.054
JCNN3 0.841 −0.192 3.607 0.789 −0.798 4.230 0.938
JCNN4 0.856 −0.286 3.357 0.787 −1.618 4.098 0.919
GRNN 0.859 −0.015 3.303 0.773 −0.749 4.295 0.900

Figure 3sActual pharmacokinetic observations from the training data set are
compared with ANN pharmacokinetic predictions using in vitro inputs from
the training data set. The GRNN was trained with the training pattern file
ASSOCIATION 4.

Figure 4sActual pharmacokinetic observations from the validation data set
are compared with ANN pharmacokinetic predictions using in vitro inputs from
the validation data set. The GRNN was trained with the training pattern file
ASSOCIATION 4.
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A thorough description of the theoretical development
and implementation of the GRNN is too involved for this
discussion, but can be referenced in the work by Specht.10

This network structure requires only a single iteration to
provide estimates of continuous variables and has a distinct
advantage in that it can converge to a linear or nonlinear
regression surface, even with relatively little data. This
property as well as its success in these trials with all of
the different types of pattern files encourage its use in this
type of research.

A problem in implementing the recurrent network
structures, as reflected in the results presented here, was
the determination of a stopping criteria. As with all back-
propagation network training performed in these trials, the
test pattern file was applied periodically throughout train-
ing and was a measure used to indicate the completion of
training before the onset of memorization. Because of the
importance in keeping a sequential structure with recur-
rent networks, rather than the test set randomly con-
structed from the training data, the ninth subject receiving
the second formulation was used as the selected test
pattern file. This procedure proved to be a good measure
that prevented memorization, but biased the trained
network in the favor of this test set. A typical plot of the
error as a function of the training intervals for a recurrent
network is shown in Figure 5. Once a minimum is found,
network training oscillates across subjects until training
is stopped, the time of which is based on the number of
iterations following a minimum in the test set. A trained
network based on a minimum corresponding to the test
pattern file is saved, biasing the results to the data used
as the test set. So, although the recurrent ANN structures
produced fair results, these results were biased to the
selected test pattern file. Better results may be expected
if a better “average” or unbiased test pattern can be found,
the intersubject variability can be better described using
additional inputs, or another method to protect against
network memorization can be found.

In most ANN structures, the number of inputs and
outputs dictate the number of input and output nodes,
respectively. Hence, more inputs and outputs lead to a
more complicated network structure. Although relatively
successful here, the ASSOCIATION 1 pattern file had a

total of 15 outputs, which must be considered in the
evaluation of these types of input-output associations for
ANN-IVIVC. When the level of complexity of the struc-
ture increases, the likelihood of obtaining a good solution
decreases. As this research progresses, it is expected that
the number of independent variables, or inputs, will be
increased, adding to the complexity of the models and
making input-output associations, like that found in
ASSOCIATION 1, undesirable. The memorative type of
input-output association used to construct the ASSOCIA-
TION 4 pattern files worked well with all eight ANN
architectures. This type of pattern file had the advantage
of being a generalized format with a single output, which
also allows the network to incorporate relationships from
the previous inputs. A disadvantage of this pattern file is
its inability to use information from dissolution values with
a time of dissolution greater than the corresponding time
of the pharmacokinetic observation. This pattern file may
not predict well in data sets where the dissolution lags
behind the pharmacokinetics.

The number of network configurations can be immense
when considering some of the variables examined here,
such as network architecture, data formats, and number
of hidden layers, and considering some of the other possible
network configuration variables not addressed; for ex-
amples, number of hidden nodes, additional network
structures, learning algorithms, and the different types of
node transfer functions. The number of hidden nodes in
these trials were set to the software defaults, which were
allowed to be conservatively large, because the periodic
application of the test pattern file helps to prevent memo-
rization. Some of the more common network architectures
were examined in this study, but there were many more
that may prove to be as good or better in ANN-IVIVC.
Other possible structures that may prove to be applicable
are the newer multilayer networks that include a lag in
the data between the dependent and independent vari-
ables.9 The node transfer functions were limited to the
linear and logistic transfer functions in this study, but
many other different types of functions, such as a limit,
competitive, hyperbolic tangent, sine, or Gaussian may be
used.

Conclusion
We have evaluated a number of possible network con-

figurations, many of which successfully predicted a mean
in vivo plasma concentration profile using dissolution
kinetics. This work has demonstrated the feasibility of
ANN-IVIVC by showing a number of potential ANN
configurations that can be considered successful with this
data set, but has illustrated a need for a methodical
approach in applying ANN to problems. Additional input
variables, including subject demographics, dissolution
method variables, and formulation variables, are currently
being introduced to attempt to account for the nonrandom
error associated in the relationship. The ANN-IVIVC has
the potential to establish complex relationships and may
also possess the ability to interpolate pharmacokinetic
parameters and profiles given formulation specifications.
Also, algorithms and software currently exist to reverse
map from the plasma concentration curve to the dissolution
profile, possibly forecasting a range of dissolution profiles
that will provide bioequivalent formulations.
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